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PLS-1, a variant of the partial least-squares algorithm was used for the solid-phase spectrofluorimetric determination of acetylsa
ASA) and caffeine (CF) in pharmaceutical formulations. The method allows the simultaneous quantification of the analytes, as
verlapping spectral bands are efficiently solved. Sample preparation prior to analysis is not required. The calibration set cons
amples with 50–170 mg g−1 ASA plus 5–20 mg g−1 CF; another set of 25 samples was used for external validation. Agreement b
redicted and experimental concentrations was fair (r= 0.987 and 0.974 for ASA and CF models). For both models, the prediction perfor
as evaluated in terms of the coefficient of variability (CV), relative predictive determination (RPD), and ratio error range (RER).
LS-1 models were used for the determination of ASA and CF in pharmaceutical formulations.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Exploitation of multivariate calibration as a means to im-
rove multicomponent analysis has been increasing, espe-
ially in relation to samples of biological[1], environmental
2] and/or pharmaceutical[3] interest. In this context, chemo-
etrics is nowadays considered an useful approach to im-
rove the determination of pharmaceutical compounds by
ifferent techniques[4–6].

Acetylsalicylic acid (ASA) and caffeine (CF) are active
rinciples widely used and frequently combined in pharma-
eutical preparations[7]. The simultaneous determination
f these chemical species can be performed by high per-

ormance liquid chromatography[8], and other techniques
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relying on spectrophotometry[9–11] and Fourier transform
infrared spectrometry[12]. However, requirements of co
time, labor and reagent consumption are inherent to mo
the above mentioned procedures. Moreover, the need for
ple preparation prior to the determination makes them c
bersome and, thus, less attractive for large-scale analys

Other techniques such as Near-infrared (NIR)[13,14]and
Raman[15] spectroscopy have been also widely used
single or multi-analyte determination. Regarding NIR sp
troscopy, some parameters, such as sample humidity
influence the analytical results, mainly in relation to p
dered samples[16]; moreover, a low spectral resolution
inherent to this technique. Raman spectroscopy may pr
limitations in sensitivity, often requiring powerful and cos
laser sources for excitation[17]. Another possibility fo
analysis of powdered pharmaceutical tablets is the rec
proposed solid-phase fluorescence, already applied to
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determination[18]. This new approach has not been applied
to simultaneous determinations.

Multiple linear (MLR), principal component (PCR) and
partial least squares (PLS) regressions are receiving increas-
ing attention as calibration techniques, as they generally lead
to a simplification in sample handling and sometimes to the
unneed for separation steps[19]. They have been often ap-
plied to analysis of pharmaceutical formulations containing
two or more components yielding overlapping spectra. In this
context, exploitation of multivariate calibration algorithms,
especially PLS, which makes use of decomposition into latent
variables, has increased in recent years[20,21]. Thus, PLS
has been used in combination with different spectroscopic
techniques such as, e.g. UV–vis spectrophotometry[22,23],
NIR [24] or fluorescence spectroscopy, FS[25,26].

FS procedures have been widely used due to their favor-
able characteristics of sensitivity, selectivity and instrumental
cost. As FS procedures may present limitations in the analysis
of components yielding strongly overlapping spectra, a prior
separation step is usually required. When a linear relationship
between analyte concentration and fluorescence intensity is
observed, PLS can be successfully applied for quantitative
analysis of multicomponent mixtures that cannot be easily
solved by univariate spectrofluorimetry[27,28].

This paper reports the development of two models (for
ASA and CF) using PLS-1 for the simultaneous spectroflu-
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were used for diluting the investigated mixtures in accordance
with the intended concentrations.

The samples were prepared according to the British Phar-
macopoeia recommendations[7]. The sample dilutions were
carried out after powdering the samples until a homogeneous
particle size was attained; this powder was further mixed and
homogenized with the solid ingredients.

2.3. Procedure

Sample amounts with 50–170 mg g−1 ASA plus
5–20 mg g−1 CF were accurately weighed and mixed with
lactose, maize starch, talc, and magnesium stearate in the
70:15:10:5 or 80:10:7:3 w/w proportions. As the ASA to CF
ratios in commercial tablets (usually around 10:1 w/w) is not
always kept, different proportions (9:1, 10:1 and 11:1 w/w)
were tested. A 25 mg sample amount was placed into the
96-well plate as previously described[18]. The fluorescence
spectra of the mixture were recorded between 310 and
375 nm, maintaining the excitation wavelength at 275 nm
and the ambient temperature at 25± 1◦C. For both models,
the multivariate calibration was performed by PLS with one
dependent variable (PLS-1).

Data from the recorded spectra were mean centered in
order to remove any offset. The numbers of latent variables
were determined by the leaving one out approach.
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rimetric analysis of solid matrices. The native ASA
F fluorescences are exploited; therefore the intended p
ure should not require any prior separation or derivatiza
tep.

. Experimental

.1. Apparatus

Measurements were performed by a LS-55 m
erkin-Elmer luminescence spectrometer, equipped w
enon discharge lamp (20 kW, 8�s), two Monk–Gillieson
onochromators, a Hamamatso photomultiplier, a refer
hotodiode, an optical-fiber accessory and a 96-well
compartment for the powdered samples). Slits for excita
nd emission were set as 10 nm, the photomultiplier
ge was adjusted to 775 mV, and the monochromator
ate was kept as 500 nm min−1. Some parameters influen
ng the fluorescence intensity, such as sample amoun
istance between optical fiber and sample had already
stablished[18]. For data acquisition and treatment, a PC
rocomputer running commercial Pirouette software (ver
.02, Infometrix Inc.) was used.

.2. Reagents and samples

Lactose, maize starch, talc and magnesium stearate
f pharmaceutical grade (GALENA), whereas ASA and
ACROS) were of analytical-reagent grade. The ingred
The ASA and CF models were developed from 83 sam
repared in the laboratory; 25 additional samples were us
valuate model performance (validation step). The valida
ample set was prepared with ASA and CF concentra
ifferent than those employed for calibration, followin
andom design, but keeping all values within the corresp
ng calibration ranges for each analyte. After dimension
he procedure was applied to the analysis of pharmace
ormulations and the main figures of merit were evaluat

. Results and discussion

An analytical produce should not be susceptible to s
ariations in the nominal value of experimental variab
uch as concentration, environmental and sample cond
29,30]. In this regard, several definitions related to rob
ess and ruggedness have been proposed, and the e
ion “robustness” is differently used, according to the
ific problem[31]. In the present work, different ASA/C
ass proportions as well as different ingredient amo
ere tested. Corroborating the previous study[18] it was
lso noted that each component used as ingredient pr
ifferent effects on the fluorescence signal of ASA. Howe

t has shown a good robustness for small variations of th
redients with a relative standard deviation of 2.3% forn= 6.
arger variations in the ingredient proportions were prep

or the models construction in order to decrease the effe
he ingredients, thus minimizing the prediction errors du
ariations in the ingredient or active substance proportio
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Fig. 1. Excitation (1 and 2) and emission (3 and 4) spectra for individ-
ual ASA and CF, respectively. Spectra recorded with 80 mg g−1 for each
compounds.

3.1. Spectra of the studied compounds

Fig. 1 shows the individual ASA and CF excitation and
emission spectra. It can be observed that ASA presents a
strong emission band around 320 nm and CF a less intense
band at 367 nm. A great overlapping of the spectra is veri-
fied, which cannot be well solved by traditional procedures.
Besides, CF is a minor constituent in most of the commer-
cial pharmaceutical preparations; this makes resolution of the
mixture even more complex. However, there are some spec-
tral differences that can be used to solve this mixture by mul-
tivariate calibration methods. The spectral region between
310 and 375 nm was set from the range of 300 up to 420 nm,
because it provides the maximum spectral information of the
components in the mixture.

3.2. Calibration and number of factors

The data set was mean centered to build the calibration
models and their performances were evaluated by leaving one
out cross validation, in which each sample was left out once,
and its concentration was estimated by a model built with the
remaining samples[32]. In order to find the optimum number
of factors for the PLS-1 model the prediction residual error
sum of square (PRESS)[32,33]was calculated according to
E

P
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3.3. Validation set

In order to test the prediction performance of the proposed
method, the constructed models were used for ASA and CF
determinations in a situation where all the constituents of
the samples are known, including the different concentra-
tions of ASA and CF. For this task, 25 samples contain-
ing the same ingredients as the mixtures for the calibration
set were used. From the experimental and predicted values
in Table 1, it can be seen that only two samples for each
model (ASA and CF) were predicted with residuals close to
10%.

A way to evaluate the prediction ability of a model is the
coefficient of variability (CV)[34], expressed as a percentage
of the mean of the true concentrations, given by

CV = S.D.RES
100

meanEXP
(2)

where S.D.RES is the standard deviation of the residuals
and meanEXP is the mean of the experimental concentration.

Table 1
Results of evaluation of the prediction ability

Sample Experimental
(mg g−1)

Predicted
(mg g−1)

Relative
residuals (%)

ASA CF ASA CF ASA CF

1
1
1
1
1
1
1
1
1
1
2
2
2
2
24 117.4 10.7 113.0 11.1 3.7 −3.7
25 144.9 13.2 137.9 13.0 4.8 1.5

Mean 110.6 11.0 111.1 10.9 −0.4a 0.1a

S.D. 27.6 2.7 28.2 2.8 5.7a 0.7a

Range 71.9 8.4
RPD 4.8 3.9
RER 12.6 12.0
CV 5.2 6.4
R 0.987 0.974

S.D.: standard deviation (n= 25); RPD: relative predictive deviation; RER:
ratio error range; CV: coefficient of variability;R: correlation coefficient.

a The values are expressed in relation to the absolute residuals.
q.(1):

RESS=
m∑

i=1

(Ĉi − Ci)
2

(1)

herem is the total number of samples,Ĉi the estimated con
entration, andCi the reference concentration. It was verifi
hat the optimum number of latent variables for the PLS-
orithm were 4 and 3 for ASA and CF, respectively, as yie

he minimum PRESS values.
1 94.8 10.5 96.1 9.9 −1.4 5.7
2 83.8 8.4 92.6 8.8 −10.5 −4.8
3 83.8 8.4 89.5 9.0 −6.8 −7.1
4 75.7 7.6 74.6 7.4 1.5 2.6
5 104.5 10.5 111.3 10.4 −6.5 1.0
6 104.5 10.5 96.5 9.6 7.7 8.6
7 120.7 12.1 116.1 11.6 3.8 4.1
8 144.3 14.5 146.2 13.6 −1.3 6.2
9 141.5 12.9 143.9 14.2 −1.7 −10.1
0 82.5 7.5 81.9 8.1 0.7 −8.0
1 171.6 15.6 169.6 16.8 1.2 −7.7
2 72.8 8.1 72.0 6.9 1.1 14.8
3 101.9 11.3 107.0 10.9 −5.0 3.5
4 118.6 13.2 129.0 12.9 −8.8 2.3
5 82.2 7.5 77.6 7.2 5.6 4.0
6 142.5 15.9 139.8 14.8 1.9 6.9
7 93.7 9.4 96.8 10.0 −3.3 −6.4
8 93.7 9.4 98.4 9.3 −5.0 1.1
9 122.2 12.2 132.3 12.9 −8.3 −5.7
0 144.7 14.5 146.6 14.2 −1.3 2.1
1 144.7 14.5 146.6 14.2 −1.3 2.1
2 82.5 7.5 72.5 7.1 12.1 5.3
3 96.1 8.7 88.9 8.7 7.5 0.0
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Table 2
ASA and CF concentrations (added, found), expressed in mg g−1 are mean of three determinations; proportions 1 and 2 = 70:15:10:5 and 80:10:7:3, w/w

Sample Proportion Acetylsalicylic acid Caffeine

Added Found Recovery (%) Added Found Recovery (%)

1 1 83.1 84.0 101.1± 2.2 8.3 8.0 96.4± 3.9
2 83.0 82.3 99.2± 1.4 8.3 8.6 103.6± 4.6
3 92.0 90.9 98.8± 1.3 9.2 9.3 101.1± 2.3
4 92.1 88.4 96.0± 3.8 9.2 8.9 96.7± 1.3

5 2 93.2 90.8 97.4± 3.1 9.4 9.9 105.3± 4.7
6 93.1 92.1 99.0± 2.4 9.4 9.7 103.2± 3.8
7 93.2 91.2 97.9± 2.2 9.4 9.5 101.1± 1.4
8 93.0 91.8 98.7± 1.4 9.4 9.7 103.2± 3.1

Furthermore, for the same purpose of evaluation of the pre-
diction ability relative prediction deviation (RPD) and ratio
error range (RER) were also calculated, according to Eqs.(3)
and (4) [34]:

RPD= S.D.CEXP

S.D.RES
(3)

RER= CEXPMAX CEXPMIN

S.D.RES
(4)

S.D.CEXP is the standard deviation of experimental concen-
trations, S.D.RES the standard deviation of the residuals,
CEXPMAX andCEXPMIN represents the maximum and mini-
mum experimental concentrations, respectively. Having in
mind the strong overlap between the spectra of two com-
pounds under investigation, the results presented inTable 1
can be considered satisfactory.

3.4. Precision

The precisions of the models were checked by means of
one-way ANOVA by performing ten successive prediction for
a typical sample containing 80 mg g−1 ASA and 10 mg g−1

CF, and the relative standard deviations were calculated as
3.1 and 4.0%, respectively, confirming the good repeatability
associated with the proposed models.
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formulations was rapid and precise, yielding satisfactory re-
sults. Prior sample preparation and ASA hydrolysis[1,9,22]
are not required, therefore some limitations inherent in tra-
ditional analytical procedures, such as intensive laboratory
steps, increased analysis time and high reagent consumption
are lessened. The approach permits the simultaneous quantifi-
cation of ASA and CF, even though these compounds present
closely overlapping spectral bands, therefore cumbersome
separation steps are not required. A simple reading of the flu-
orescence spectrum in the solid sample enables an easy and
fast determination, once the calibration parameters have been
established.
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